
Programiranje korisničkih interfejsa

Bojan Furlan

Creating Objects

 Step 1: Allocating memory

 Use new keyword to allocate memory from the heap

 Step 2: Initializing the object by using a constructor

 Use the name of the class followed by parentheses

Date when = Date when = new Date();

Using Initializer Lists

 Overloaded constructors might contain duplicate code

 Refactor by making constructors call each other

 Use the this keyword in an initializer list

class Date

{

}

class Date

{

 ...

 public Date() : this(1970, 1, 1) { }

 public Date(int year, int month, int day) { ... }

}

Value of constant field is
obtained at compile time

Value of readonly
field is obtained at
run time

Declaring Readonly Variables and Constants

Keywords const & readonly

class MyClass {

 int x = 5;

 int y = 25;

 int xx;

 int yy; //ok

 int zz = GetZ(); //ok

 public MyClass() {

 yy = 24;

 }

 public void MyMethod {

 yy = 10; x = 7;

 }

}

 Objects and Memory

 Object Lifetime

 Objects and Scope

 Garbage Collection

Object Lifetime

 Creating objects

 You allocate memory by using new

 You initialize an object in that memory by using a
constructor

 Using objects

 You call methods

 Destroying objects

 The object is converted back into memory

 The memory is de-allocated

Objects and Scope

 The lifetime of a local value is tied to the scope in which
it is declared

 Short lifetime (typically)

 Deterministic creation and destruction

 The lifetime of a dynamic object is not tied to its scope

 A longer lifetime

 A non-deterministic destruction

Garbage Collection

 You cannot explicitly destroy objects

 C# does not have an opposite of new (such as delete)

 This is because an explicit delete function is a prime
source of errors in other languages

 Garbage collection destroys objects for you

 It finds unreachable objects and destroys them for you

 It finalizes them back to raw unused heap memory

 It typically does this when memory becomes low

 Resource Management

 Object Cleanup

 Writing Destructors

 Warnings About Destructor Timing

 IDisposable Interface and Dispose Method

 The using Statement in C#

Object Cleanup

 The final actions of different objects will be different

 They cannot be determined by garbage collection.

 Objects in .NET Framework have a Finalize method.

 If present, garbage collection will call destructor before
reclaiming the raw memory.

 In C#, implement a destructor to write cleanup code. You
cannot call or override Object.Finalize.

Writing Destructors

 A destructor is the mechanism for cleanup

 It has its own syntax:

- No access modifier

- No return type, not even void

- Same name as name of class with leading ~

- No parameters

class SourceFile

{

}

class SourceFile

{

 ~SourceFile() { ... }

}

Warnings About Destructor Timing

 Destructors are guaranteed to be called

 Cannot rely on timing

 Avoid destructors if possible

 Performance costs

 Complexity

 Delay of memory resource release

 Use them for unmanaged non-memory resources

 E.g. DB connections, file lock, sessions etc.

IDisposable Interface and Dispose Method

 To reclaim a resource:

 Inherit from IDisposable Interface and implement
Dispose method that releases resources

 Ensure that calling Dispose more than once is benign

 Ensure that you do not try to use a reclaimed resource

 Call GC.SuppressFinalize method

- Requests that the system not call the finalizer

 for the specified object.

The using Statement in C#

 Syntax

 Dispose is automatically called at the end of the using
block

using (Resource r1 = new Resource())

{

}

using (Resource r1 = new Resource())

{

 r1.Method();

}

Dispose design example

public class BaseResource: IDisposable

{

 …

public class BaseResource: IDisposable

{

 // Pointer to an external resource

 private IntPtr handle;

 // Other resource this class uses

 private Component Components;

 // To track whether Dispose has been called

 private bool disposed = false;

 // Constructor for the BaseResource object

 public BaseResource()

 {

 handle = // Insert code here to allocate on the

 // unmanaged side

 Components = new Component (...);

 }

 …

Dispose design example

// Implement IDisposable.

// Implement IDisposable.

 // Do not make this method virtual.

 // A derived class should not be able to override

 // this method.

 public void Dispose()

 {

 Dispose(true);

 // Take yourself off of the Finalization queue

 GC.SuppressFinalize(this);

 }

Dispose design example

 protected virtual void Dispose(bool disposing)

…

 protected virtual void Dispose(bool disposing)

 {

 // Check to see if Dispose has already been

 // called

 if(!this.disposed)

 {

 // If this is a call to Dispose, dispose all

 // managed resources

 if(disposing)

 {

 Components.Dispose();

 }

…

Dispose design example

 // Release unmanaged resources.

 // Release unmanaged resources.

 // Note that this is not thread-safe.

 // Another thread could start disposing the

 // object after the managed resources are

 // disposed, but before the disposed flag is

 // set to true.

 this.disposed = true;

 Release(handle);

 handle = IntPtr.Zero;

 }

 }

Dispose design example

 // Use C# destructor syntax for finalization code.

…

 // Use C# destructor syntax for finalization code.

 // This destructor will run only if the Dispose

 // method does not get called. It gives your base

 // class the opportunity to finalize. Do not

 // provide destructors in types derived from

 // this class.

 ~BaseResource()

 {

 Dispose(false);

 }

…

Dispose design example

// Design pattern for a derived class.

// Note that this derived class inherently implements

// the

// in the base class.

public class

{

// Design pattern for a derived class.

// Note that this derived class inherently implements

// the IDisposable interface because it is implemented

// in the base class.

public class MyResourceWrapper: BaseResource

{

 private bool disposed = false;

 public MyResourceWrapper()

 {

 // Constructor for this object

 }

Dispose design example

 protected override void Dispose(bool disposing)

 protected override void Dispose(bool disposing)

 {

 if(!this.disposed)

 {

 try

 {

 if(disposing)

 {

 // Release any managed resources here

 }

 // Release any unmanaged resources here

 this.disposed = true;

 }

 …

Dispose design example

…

finally

}

// This derived class does not have a Finalize method

// or a Dispose method with parameters because it

// inherits them from the base class

…

finally

 {

 // Call Dispose on your base class

 base.Dispose(disposing);

 }

 }

 }

}

// This derived class does not have a Finalize method

// or a Dispose method with parameters because it

// inherits them from the base class

