
Programiranje korisničkih interfejsa

Bojan Furlan

Creating Objects

 Step 1: Allocating memory

 Use new keyword to allocate memory from the heap

 Step 2: Initializing the object by using a constructor

 Use the name of the class followed by parentheses

Date when = Date when = new Date();

Using Initializer Lists

 Overloaded constructors might contain duplicate code

 Refactor by making constructors call each other

 Use the this keyword in an initializer list

class Date

{

}

class Date

{

 ...

 public Date() : this(1970, 1, 1) { }

 public Date(int year, int month, int day) { ... }

}

Value of constant field is
obtained at compile time

Value of readonly
field is obtained at
run time

Declaring Readonly Variables and Constants

Keywords const & readonly

class MyClass {

 int x = 5;

 int y = 25;

 int xx;

 int yy; //ok

 int zz = GetZ(); //ok

 public MyClass() {

 yy = 24;

 }

 public void MyMethod {

 yy = 10; x = 7;

 }

}

 Objects and Memory

 Object Lifetime

 Objects and Scope

 Garbage Collection

Object Lifetime

 Creating objects

 You allocate memory by using new

 You initialize an object in that memory by using a
constructor

 Using objects

 You call methods

 Destroying objects

 The object is converted back into memory

 The memory is de-allocated

Objects and Scope

 The lifetime of a local value is tied to the scope in which
it is declared

 Short lifetime (typically)

 Deterministic creation and destruction

 The lifetime of a dynamic object is not tied to its scope

 A longer lifetime

 A non-deterministic destruction

Garbage Collection

 You cannot explicitly destroy objects

 C# does not have an opposite of new (such as delete)

 This is because an explicit delete function is a prime
source of errors in other languages

 Garbage collection destroys objects for you

 It finds unreachable objects and destroys them for you

 It finalizes them back to raw unused heap memory

 It typically does this when memory becomes low

 Resource Management

 Object Cleanup

 Writing Destructors

 Warnings About Destructor Timing

 IDisposable Interface and Dispose Method

 The using Statement in C#

Object Cleanup

 The final actions of different objects will be different

 They cannot be determined by garbage collection.

 Objects in .NET Framework have a Finalize method.

 If present, garbage collection will call destructor before
reclaiming the raw memory.

 In C#, implement a destructor to write cleanup code. You
cannot call or override Object.Finalize.

Writing Destructors

 A destructor is the mechanism for cleanup

 It has its own syntax:

- No access modifier

- No return type, not even void

- Same name as name of class with leading ~

- No parameters

class SourceFile

{

}

class SourceFile

{

 ~SourceFile() { ... }

}

Warnings About Destructor Timing

 Destructors are guaranteed to be called

 Cannot rely on timing

 Avoid destructors if possible

 Performance costs

 Complexity

 Delay of memory resource release

 Use them for unmanaged non-memory resources

 E.g. DB connections, file lock, sessions etc.

IDisposable Interface and Dispose Method

 To reclaim a resource:

 Inherit from IDisposable Interface and implement
Dispose method that releases resources

 Ensure that calling Dispose more than once is benign

 Ensure that you do not try to use a reclaimed resource

 Call GC.SuppressFinalize method

- Requests that the system not call the finalizer

 for the specified object.

The using Statement in C#

 Syntax

 Dispose is automatically called at the end of the using
block

using (Resource r1 = new Resource())

{

}

using (Resource r1 = new Resource())

{

 r1.Method();

}

Dispose design example

public class BaseResource: IDisposable

{

 …

public class BaseResource: IDisposable

{

 // Pointer to an external resource

 private IntPtr handle;

 // Other resource this class uses

 private Component Components;

 // To track whether Dispose has been called

 private bool disposed = false;

 // Constructor for the BaseResource object

 public BaseResource()

 {

 handle = // Insert code here to allocate on the

 // unmanaged side

 Components = new Component (...);

 }

 …

Dispose design example

// Implement IDisposable.

// Implement IDisposable.

 // Do not make this method virtual.

 // A derived class should not be able to override

 // this method.

 public void Dispose()

 {

 Dispose(true);

 // Take yourself off of the Finalization queue

 GC.SuppressFinalize(this);

 }

Dispose design example

 protected virtual void Dispose(bool disposing)

…

 protected virtual void Dispose(bool disposing)

 {

 // Check to see if Dispose has already been

 // called

 if(!this.disposed)

 {

 // If this is a call to Dispose, dispose all

 // managed resources

 if(disposing)

 {

 Components.Dispose();

 }

…

Dispose design example

 // Release unmanaged resources.

 // Release unmanaged resources.

 // Note that this is not thread-safe.

 // Another thread could start disposing the

 // object after the managed resources are

 // disposed, but before the disposed flag is

 // set to true.

 this.disposed = true;

 Release(handle);

 handle = IntPtr.Zero;

 }

 }

Dispose design example

 // Use C# destructor syntax for finalization code.

…

 // Use C# destructor syntax for finalization code.

 // This destructor will run only if the Dispose

 // method does not get called. It gives your base

 // class the opportunity to finalize. Do not

 // provide destructors in types derived from

 // this class.

 ~BaseResource()

 {

 Dispose(false);

 }

…

Dispose design example

// Design pattern for a derived class.

// Note that this derived class inherently implements

// the

// in the base class.

public class

{

// Design pattern for a derived class.

// Note that this derived class inherently implements

// the IDisposable interface because it is implemented

// in the base class.

public class MyResourceWrapper: BaseResource

{

 private bool disposed = false;

 public MyResourceWrapper()

 {

 // Constructor for this object

 }

Dispose design example

 protected override void Dispose(bool disposing)

 protected override void Dispose(bool disposing)

 {

 if(!this.disposed)

 {

 try

 {

 if(disposing)

 {

 // Release any managed resources here

 }

 // Release any unmanaged resources here

 this.disposed = true;

 }

 …

Dispose design example

…

finally

}

// This derived class does not have a Finalize method

// or a Dispose method with parameters because it

// inherits them from the base class

…

finally

 {

 // Call Dispose on your base class

 base.Dispose(disposing);

 }

 }

 }

}

// This derived class does not have a Finalize method

// or a Dispose method with parameters because it

// inherits them from the base class

