
Programiranje korisničkih interfejsa

Bojan Furlan

Overview

 Adding Accessibility Features

 Adding Help to an Application

 Localizing an Application

Lesson: Adding Accessibility Features

 Accessibility options

 Microsoft accessibility aids

 Narrator

 Magnifier

 On-Screen Keyboard

 Developers can provide accessibility support by setting
properties on forms and controls in their applications

Accessibility Support in the .NET Framework

How to Make Forms and Controls Accessible

this.AppExitButton = new System.Windows.Forms.PushButton();

this.AppExitButton.Text = "E&xit";

AppExitButton.AccessibleRole =

System.Windows.Forms.AccessibleRole.PushButton;

AppExitButton.AccessibleName = "Exit";

AppExitButton.AccessibleDescription = "Use this button to

exit the application";

this.Controls.Add(this.AppExitButton);

Control Property Description

AccessibleName

Briefly describes and identifies

the object. Examples: button

or menu item text

AccessibleDescription
Provides greater context for

low-vision or blind users

AccessibleRole
Describes the use of the

element in the user interface

Set standard properties
to values that support
accessibility

Set accessibility properties

Text, Font Size, Forecolor,
Backcolor, BackgroundImage

At design time or
programmatically

How to Test Accessibility

Build the application

Turn on an accessibility aid, such as Narrator

Run the application

Practice: Adding Accessibility Support to an
Application

In this practice, you will

 Set the AccessibleName property for a
control

 Enable Narrator

 Run the application to see the results

10 min
Begin reviewing the objectives for

this practice activity

Lesson: Adding Help to an Application

Help in the .NET Framework

 Context-sensitive Help

 HelpProvider control

 HelpButton property

 Help menu support

 The ToolTip control

How to Add Context-Sensitive Help for Forms and
Controls

Add the HelpProvider control

Set the HelpNamespace property

Add a HelpButton to the form

For each control that you want to add Help information set the
following properties

 HelpKeyword

 HelpNavigator

 HelpString

Build and test the application

Give a control focus and press F1

How to Link Help Topics to a Menu

Help.ShowHelp (this, HelpProvider.HelpNamespace);

Parent of the Help
dialog box

Path and name of
Help file

Set the HelpNamespace property to point to a file or URL,
such as http://localhost/InternalBusinessAppHelp.htm

Add a MainMenu control to the form

 Add Help menu item and subitems

 Implement Help menu subitem click event procedures to open
the HelpNamespace

How to Display Help with the ToolTip Control

Add the ToolTip control

Build and test the
application

Set the value for the
ToolTip on ToolTip…
property

Point to a control that has

an associated ToolTip

Practice: Adding Help to an Application

In this practice, you will

 Add context-sensitive Help to an
application

 Link a Help file to context-sensitive Help

 Link a Help file to a Help menu item

15 min
Begin reviewing the objectives for

this practice activity

Lesson: Localizing an Application

 Globalization

 Localization

 Culture

 Region

Localization in the .NET Framework

 Localizing the user interface elements

 Localizing other resources

 Strings

 Bitmaps

 Other objects, such as audio files

How to Set Localization Properties

Create the default culture version of the form

Set the Localizable property of the form to True

Set the appropriate value for the Language property
of the form

Modify the Text property values for the form and controls into
the appropriate language

Build the application

Resize and/or reposition each control as needed

How to Create Localized Resource Files

Open an existing project and add an assembly resource file
for the appropriate culture

Add entries to the resource file with values in the appropriate
language for the culture

Save the file

Build the application

Add code to the application to use a resource manager to
extract the elements from the resource file

How to Change the Locale

ResourceManager rm = new

ResourceManager("MyNamespace.Resource1",

Assembly.GetExecutingAssembly());

MessageBox.Show(rm.GetString("test_1"));

Root name of the
resource file

Main assembly for
the resources

Add code to an application to programmatically set the
culture and UICulture for an application to the new value

The user can change the regional and language options from
Control Panel

using System.Globalization;

using System.Resources;

using System.Threading;

…

Thread.CurrentThread.CurrentUICulture =

Thread.CurrentThread.CurrentCulture;

Practice: Localizing an Application

In this practice, you will

 Localize the user interface of an
application

 Add localized string resources to an
application

15 min
Begin reviewing the objectives for

this practice activity

