
Programiranje korisničkih interfejsa

Bojan Furlan

What Is Asynchronous Programming?

 An application gives some work to other thread(s)
while it continues doing other work on the main thread

 Useful in Windows Forms
applications so users will
not be blocked waiting for
results and can instead
continue with other work

Submit reports

Create new

reports

Submit reports

to server

Main thread

Worker thread

Demonstration: Comparing Synchronous and
Asynchronous Versions of an Application

In this demonstration, you will be able to compare the user

experience in synchronous and asynchronous versions of the

application

Asynchronous Programming Support in the .NET
Framework

 A design pattern for asynchronous programming

 Used by the .NET Framework to make asynchronous
calls uniform across different parts of the framework

 User-created classes that support asynchronous calls
should conform to this design pattern

 Asynchronous support is provided in many of the
logical areas

 I/O, sockets, networking, ASP.NET and XML Web
services, messaging, and asynchronous delegates

 Implementation is transparent, call the appropriate
methods and let the NET Framework handle the details

The Asynchronous Programming Model Design
Pattern

Choose

completion

mechanism

Asynchronous?

NO

YES

// ...

// ... call Operation

// ... wait for return

// ... continue processing

// ...

// ...

// ... call BeginOperation

// ... operation begun on

// another thread

// ... continue with other

// processing

// ... receive results

// ... process results

// ...

Overview of the Asynchronous Programming
Model Design Pattern

 Caller decides whether a particular call should be asynchronous

 Asynchronous operation logically split into two parts

1. Client begins the operation by calling the BeginOperation method

2. Client notified that operation is complete and receives results

Completion Technique

Use a callback

Comments

Supply a callback delegate, method will be
called when operation completes (no blocking)

Poll
Poll the IAsyncResult interface’s IsCompleted
property

Call the EndOperation
method

Call the EndOperation method and block till
operation completes (Problem: infinite blocking)

Wait on a handle
Wait on IAsyncResult interface’s WaitHandle
property, then call EndOperation method

Create the asynchronous callback delegate

Callback Delegate{

Main thread

Inside the callback, invoke the EndOperationmethod to notify that
asynchronous work is complete and to return results

EndOperation

}

Return control to the main thread and update UI

Update UI

Invoke the BeginOperationmethod, passing it the callback delegate

Thread from thread pool

BeginOperation

{…}

Get reports

Using the Design Pattern with an Asynchronous
Callback for Completion

How to Set Up and Initiate the Call

Create the asynchronous callback delegate

Invoke the BeginOperationmethod, passing it the callback delegate

AsyncCallback delCB = new AsyncCallback(

this.AsyncCB);

Asynchronous callback delegate

WS.BeginGetReportsForEmployee(

username, pwdToken,

RecordCursor, 10, TotalNumRecords,

delCB, null);

Invoke the BeginOperation method

Callback delegate is passed in to the

BeginOperation method

How to Receive Completion Notification and Results

Inside the callback, invoke the EndOperationmethod to retrieve the
results of the asynchronous call

// Inside the callback method, AsyncCB, call

// EndOperation to get results of the async call

void AsyncCB (IAsyncResult ar)

{

...

DataSet ds = WS.EndGetReportsForEmployee(

ar, out TotalNumRecords);

...

}

Invoke EndOperation method

Receive results

How to Return Control to the Main Thread

Return control to the main thread

//Switch back to main thread to update the UI

//First, create a MethodInvoker delegate for

//the method to be called

MethodInvoker mi = new MethodInvoker(

this.UpdateUI);

// Use the current form’s BeginInvoke to

// invoke the delegate

this.BeginInvoke(mi);

In Windows Forms applications, any calls to methods

or properties for controls on the form must be done

on the main thread

Overview of How to Make Asynchronous Calls to Any
Existing Method

 Initiate the call

 Complete the call

 Return data (if applicable) and control to the main
thread

You must explicitly create and call a delegate for the method
that you want to invoke

Follow the design pattern for asynchronous programming

How to Create the Asynchronous Delegate

Declare the delegate

Instantiate the delegate, passing in the method that the delegate
points to

public delegate int CalcDelegate(

int startingValue,

int interestRate);

Delegate keyword

The delegate's

signature matches

that of the method it

will point to

//Instantiate class that contains method delegate points to

TotalReturnCalc tr = new TotalReturnCalc();

//Instantiate the delegate, passing it the method to call

CalcDelegate cd = new CalcDelegate(tr.CalculateReturn);

The method that you want the

delegate to point to

How to Initiate the Asynchronous Call

Create the delegate to the callback method

Call the BeginInvoke method

 When using a callback method, pass in the delegate for the callback
method

 Returns an object implementing IAsyncResult

// create AsyncCB delegate to callback method

AsyncCallback cb = new AsyncCallback(this.ResultsCB);

// call BeginInvoke to asynchronously call the method

IAsyncResult ar = cd.BeginInvoke(startVal, intRate, cb, null);

Method that will receive the

callback notification

Callback delegate passed in to BeginInvoke

How to Complete the Asynchronous Call

Call the EndInvoke method

 Returns a return value or a data structure that includes a return value

//inside the callback method called ResultsCB

void ResultsCB(IAsyncResult ar)

{

...

int result = cd.EndInvoke(ar);

...

}

Use EndInvoke to return results

Update the UI to reflect the results of the operation

When using Windows Forms, this involves returning control back
to the main UI thread because Windows Forms can only be safely
called from the main thread

How to Return Control to the Main Thread and
Update the UI

Instantiate a MethodInvoker delegate for the UI update method

Asynchronously call the MethodInvoker delegate

// Use BeginInvoke to call the MethodInvoker

this.BeginInvoke(mi);

//Switch back to main thread before updating UI

MethodInvoker mi = new MethodInvoker(this.UpdateUI);

Practice: Making an Asynchronous Call

In this practice, you will

 Modify the application so that it makes
asynchronous calls

 Rebuild the application and observe how
the behavior of the application has
changed

15 min

Begin reviewing the objectives for this

practice activity

How to Protect State and Data in a Multithreaded
Environment

 Synchronized code region

Monitor class

 Manual synchronization

 Mutex class

 ReaderWriterLock class

 Interlocked.Increment and Interlocked.Decrement
methods

 Design applications to try to minimize synchronization
needs

Reference

 Threading in .NET and WinForms

 http://www.codeproject.com/KB/threads/Threading.aspx

http://www.codeproject.com/KB/threads/Threading.aspx
http://www.codeproject.com/KB/threads/Threading.aspx

